Bharati Vidyapeeth's Dr. Patangrao Kadam Mahavidyalaya, Sangli

Department of Mathematics

Program Specific Outcomes

- 1. Students gain a sound knowledge in foundational subjects related to pure and applied mathematics.
- 2. Acquire various skills related to computational techniques and related software's.
- 3. Being able to analyze the problem and propose a solution method and finalize the solution

and the process of solution in consultation with the peer group and faculty.

4. Develop the solution methodology and necessary software if required and prepare the report.

Course			0	utcomes			
B.Sc. I (Mathematics)							
Theory	paper:	5A	1.	Students aquaint themselves with the idea of complex			
Differential Calculus				numbers.			
			2.	Understand Meaning and significance of Hyperbolic			
				functions and their relation with circular functions			
			3.	Get to know the significance of Leibnitz's theorem, De			
				Moivre's Theorem, Euler's Theorem.			
			4.	Understand the concept of partial differentiation and learn to			
				apply it for various problems in science			
				and engineering.			
Theory	paper:	6A	1.	Students grasp the concept of mean value theorems and its			
Calculus				significance.			
			2.	Study the special case of Taylor's expansion			
			3.	Learn the meaning and significance of Indeterminate forms			
				and learn to apply it for various indeterminate limiting cases			
Theory	paper:	5B	1.	Understand the meaning, motivation and significance of			
Differential Equations				differential equations.			

	2.	Learn how to form and solve first order first degree ordinary
		differential equations.
	3.	Learn the methods of solving equations of first order and
		higher degree.
	4.	Solving higher order ordinary linear differential equations
		and homogeneous linear differential equations with constant
		coefficients.
Theory paper: 6B	1.	Study the method of solution of general second order
Higher order Ordinary		differential equation with variable coefficients.
Differential Equations		Understand the concept, formation, and method of solution
and Partial		of ordinary simultaneous equations.
Differential equations.		Study the motivation and concept of partial differential
		equations. Learn methods of solving Lagrange's equation and
		Charpit's method.
Practical: CML-I	1.	Students get aquainted with the field of numerical
(Computational		computational methods and various areas covered within
Mathematics		the subject of numerical computations with a bird's eye view
Laboratory – I)		of applications.
	2.	Learn to use electronic calculators and computers for simple
		calculations of algebraic and transcendental functions that
		are frequently required in science and technology.
	3.	Teacher gets to know student specific queries and helps
		students solve their individual problems with personal
		attention.
B.Sc. II (Mathematics)		
Theory Paper: 5C Real	1.	Learning basic concepts of set theory.
Analysis – I	2.	Study the principle of mathematical induction and apply it
		for proving results.
	3.	Acquire the concept of countabilility and determine
		countable and uncountable sets.
Theory Paper : 6C	1.	Understanding of the concept of Hermitian and Skew-
Algebra – I		Hermitian Matrix and their properties.

	2.	Grasp the concept of normal form and convert given matric
		to Normal form.
	3.	Learn the concept of Eigen value and Eigen vector . To find
		Eigen values and Eigen vectors.
Theory Paper: 5D Real	1.	Study the concept of monotonic and bounded sequences.
Analysis – II		Understand Epsilon-Delta concept of convergence of a
		sequence.
	3.	Study the methods of testing convergence of series.
Theory Paper : 6D	1.	Understand the concept of Cosets.
Algebra – II	2.	Learn the meaning of Normal subgroups of a group with
		examples.
	3.	Study the concept of a Permutation group with examples.
Practical : CML – II (1.	Learn to solve linear systems of equations by Gauss-
Computational		Elimination , Gauss-Jordan , Gauss Jacobi and Gauss-Seidel
Mathematics		methods manually with use of electronic calculators .
Laboratory – II)		Learn root finding methods viz. Newton-Raphson method,
		Bisection method.
	3.	Learn methods for evaluating numerical values of
		integrations using trapezoidal rule, simpson's $1/3$ rd rule ,
		simpson's 3/8 th rule.
Practical : CML – III (1.	Learn the basic keywords of C programming language and
Computational		practice them in computer lab.
Mathematics		Studying basic data types and input output methods in C and
Laboratory – III)		practice it in computer laboratory
	3.	Apply the knowledge of C programming for preparing C
		programs for the solution of various numerical methods
		learned in the paper CML-II